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1) Does the energy-only-market yield
sufficient returns to incentivize
investments in different fully renewable 
European energy system scenarios?

2) If other instruments complementing the
energy-only-market are needed, 
how should they be designed? 
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Different types of Contracts for Difference 
(CfDs) for wind onshore
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Reference System with ≥ 95% non-thermal 
renewables by constraint
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Price Duration Curves Electricity Generation Share by Type
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Reference System with ≥ 95% non-thermal 
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Market Values, LCOEs and Average Market Value (Reference Price)
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Contracts for Difference
Definition and Elements

“CfDs are financial contracts that specify payments from a buyer to a seller if the price of an underlying 
is below the agreed-upon strike price and [in case of a two-way CfD] a reverse payment otherwise.”

Reference: Schlecht, Hirth and Maurer (2022)
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Contracts for Difference
Definition and Elements

“CfDs are financial contracts that specify payments from a buyer to a seller if the price of an underlying 
is below the agreed-upon strike price and [in case of a two-way CfD] a reverse payment otherwise.”

Renewable electricity CfDs:
- seller: renewable energy producers
- buyer: government
- strike price: typically determined via an auction, competitive bid = ~ LCOE
- reference price: hourly/monthly/yearly day-ahead/intraday price?

Reference: Schlecht, Hirth and Maurer (2022)
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Contracts for Difference
Evaluation Criteria

1) Optimal design and siting (investment stage): investment in cheapest, but also system-friendly 
power plants

2) Optimal utilization (operational stage): always produce when price > actual short-term variable costs 

3) Achieving a policy target: expansion of renewables by decreasing investment risks (and protecting 
consumers)

Reference: Schlecht, Hirth and Maurer (2022)
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Contracts for Difference
Evaluation Criteria

1) Optimal design and siting (investment stage): investment in cheapest, but also system-friendly 
power plants

2) Optimal utilization (operational stage): always produce when price > actual short-term variable 
costs 

3) Achieving a policy target: expansion of renewables by decreasing investment risks (and protecting 
consumers)

Reference: Schlecht, Hirth and Maurer (2022)



Simple 2-way Contract for Difference
Reference Price = Hourly day-ahead price
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Sophisticated Contract for Difference – Case 1
Reference Price = Reference Market Value
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Reference Price ( ҧ𝑝)

Payment by generator per MWh produced
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Sophisticated Contract for Difference – Case 2
Reference Price = Reference Market Value

14

Reference Price ( ҧ𝑝)

Payment by generator per MWh produced
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Sophisticated 2-way Contract for Difference
Reference Price = Reference Market Value
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Reference Price ( ҧ𝑝)

Payment by generator per MWh produced

2-way CfD

Strike Price (𝑆)

Market Price (𝑝t)

Virtual variable costs

Curtailment is optimal

Evaluation: 

1) Optimal design and siting √
- Payments are decoupled from own 

market revenues and therefore, 
exposed to market price signals

2) Optimal utilization X
− Market actors form expectations of

reference price
− Anticipated payments constitute

virtual marginal costs
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Sophisticated 1-way Contract for Difference
Reference Price = Reference Market Value
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Evaluation: 

1) Optimal design and siting √
- Payments are decoupled from own 

market revenues

2) Optimal utilization Ο
− Dispatch up to negative market

prices
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Payment by generator Payment to generator
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Financial Contract for Difference
Payments = Reference Revenues
Strike Price = fixed hourly payment
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Evaluation: 

1) Optimal design and siting √
- Payments are decoupled from own 

market revenues

2) Optimal utilization √
− Full price exposure without any

virtual costs because payment does
not depend on volume
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Reference: Schlecht, Hirth and Maurer (2022)



Conclusions and hypotheses on 
outcomes of different types of CfDs

• Sophisticated CfDs lead to efficient investment decisions, yet distort dispatch

• 2way CfD: increase in curtailment, decrease in storage activity, higher market prices

• 1way CfD: decrease in curtailment, increase in storage activity, negative market prices
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• investments distorted towards technology with highest number of full load hours
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Conclusions and hypotheses on 
outcomes of different types of CfDs

• Sophisticated CfDs lead to efficient investment decisions, yet distort dispatch

• 2way CfD: increase in curtailment, decrease in storage activity, higher market prices

• 1way CfD: decrease in curtailment, increase in storage activity, negative market prices

• Simple 2way CfD leads to inefficient investment decisions

• investments distorted towards technology with highest number of full load hours

• Neither dispatch nor investment decision is distorted under financial CfDs

• Does it come closest to the reference scenario?
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TradeRES Approach
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Reference System with ≥ 95% non-thermal 
renewables by constraint
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Market Values, LCOEs and Average Market Value (Reference Price)



Preliminary Results: Investment in Wind 
Onshore
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Preliminary Results: Investment in Wind 
Onshore
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Preliminary Results: Curtailment
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Preliminary Results: Curtailment
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Preliminary Results: Storage activity
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Preliminary Results: Price Duration 
Curves
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Preliminary Results: Price Duration 
Curves
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Conclusion and Outlook

Conclusion:

• Simple 2way CfDs can increase investments in power plants with high full load hours

• Anticipated CfD payments can harm investments in renewables

• Virtual marginal costs can impact storage activity, curtailment and market prices

Limitations:

• Mix of impact on investment and dispatch (seperation?)

• More iterations to account for more „clever“ market actors

• Assumption: all power plants are remunerated within the auction

• TradeRES: will cover more market designs and include demand flexibility from other sectors
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3. Method
Energy System Model
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Model

Data: TradeRES Public Deliverable D2.1, Entso-E ERAA 2022, Entso-E TYNDP 2022, Renewables Ninja, RUB EE‘s Pypsa-to-BB, Denish Energy Agency, Gils et al. (2014)
Literature: Helistö et al. (2019), Böttger et al. (2022), Gillich & Hufendiek (2022), Finke et al. (2023)

Power Plants Geographical Scope

• Flexible open-source energy system
modelling framework Backbone

• Cost-minimizing capacity expansion
planning and subsequent unit
commitment

• Minimum share of variable 
renewables as constraint

• Interpretation of marginal system
costs as electricity prices

• VRE: Solar PV, Solar CSP, Wind onshore
and offshore, Run of river hydro (weather
year 2019)

• Thermal: Biofuel, waste, nuclear and 
hydrogen CCGT

• Storage: Pumped hydro and reservoir
hydro, batteries and hydrogen storage
with electrolysers

• Industrial load shedding units

• Maximum price = 4000€

• Exogeneous and unlimited endogeneous
capacities for all technologies except
hydro power


