


Actions for Chemicals Production from non-fossil raw materials. Is CO_2 hydrogenation the only pathway ?

10.6.2025

TRANSFORMATIVE NON-FOSSIL FUEL AND CHEMICAL SOLUTIONS

Pre-Midsummer Party: Fueling Energy Security with Renewables Location: Rue Jacques de Lalaing 33, 1040 Brussels, Belgium

Tuomas Koiranen, professor of chemical process systems engineering Kristian Melin, professor of process and plant design for biorefineries

CONTENTS

- >> Greenhouse gas emissions reductions Targets
- >> Challenges in CO₂ Hydrogenation
- >> Possibilities in Waste-to-X technologies
- >> What are potential fuel production routes and What are Platform chemicals to be produced ?
- >> Summary

PROFESSOR OF CHEMICAL PROCESS SYSTEMS ENGINEERING

TUOMAS KOIRANEN

- >> Process design in chemical and process industries
- >> Power-to-X processes and organic syntheses in P2X
- >> Fluid flows modeling and new efficient solutions in process equipment

Also: Process Intensification Working Group Member of European Federation of Chemical Engineers (EFCE)

Connect: tuomas.koiranen@lut.fi, LinkedIn

ASSOCIATE PROFESSOR OF PROCESS AND PLANT DESIGN FOR BIOREFINERIES

KRISTIAN MELIN

- >> Process design in biorefineries
- >> Conversion of lignocellulosic biomass into fuels and chemicals
- >> Merging of hydrogen economy and bioeconomy
- >> Power-to-X products, such as fossil-free, biodegradable plastic

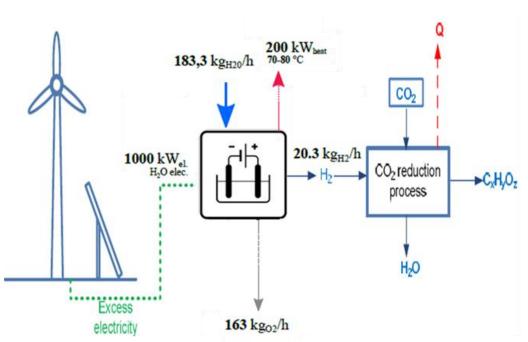
Also: Collaboration with ANDRITZ Oy in fibre technology research

GREENHOUSE GAS EMISSIONS REDUCTIONS IN EU

Non-CO. other -Greenhouse gas emissions (Gt CO, equivalent/year) Non-CO. agriculture Residential Tertiary Net emissions Transport Industry Power Residual emissions CO₂ removal LULUCF Carbon removal -1 technologies 2025 2040 2045 2050 2005 2010 2015 2020 2030 2035 Translation and adaptation: 2020 Stiftung Wissenschaft und Politik (SWP)

Illustrative emissions pathways to achieve a net-zero target in the EU

\rightarrow HOW TO REDUCE CO₂ emissions by 2045:

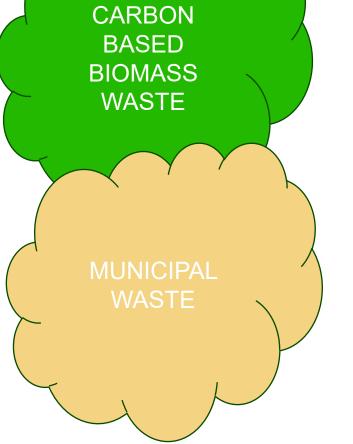

- >> Roughly 1 Gt CO₂ –eqv from Power sector?
- >> About 0.5 Gt CO₂ –eqv from Industry sector?
- >> Transport sector 0.7 Gt CO₂-eqv. reduction
- \rightarrow CO₂ capture from Point sources (10-20 mol-%) is
 - 70-90 EUR/tCO₂ capture
 - 50-60 EUR/tCO₂ liquefaction, shipping, storage
- CO₂ reduction by capture equals 200 billion EUR (110% EU Budget)
- CO₂ Storage effects to nature: underneath sea, rock caves etc?

Yun S, Jang M and Kim J (2021) Techno-economic assessment and comparison of absorption and membrane CO2 capture processes for iron and steel industry. Energy (Oxford) 229: 120778 .Suviranta, Roosa, Carbon capture integration to steam cracker furnaces – techno-economic evaluation, MSc. Thesis, 2021, LUTPub.

World economic Forum, 2020. https://www.weforum.org/stories/2020/11/heres-why-the-eu-needs-a-carbon-sink-strategy-for-climate-neutrality

HOW TO SUBSTITUTE FOSSIL BASED FUELS&CHEMICALS?

>> CO2 HYDROGENATION SCALE-UP ?


AVERAGE 1500 Mt CO₂ HYDROGENATED TO METHANOL OR TO SYNFUELS/KEROSENE BY 2045 ?

- Need for 10 Mt/a Green hydrogen (3000-9000 EUR/t) to Methanol via Syngas (H₂/CO mixture)
- >> Costs 40-90 billion EUR/a
- Necessary RWGS (Reverse water gas shift) reaction consumes Green Hydrogen to side-product Water
- >> Severe technology challenges in Syngas conversion using high temperature RWGS process: Water production from expensive Green hydrogen, lack of inexpensive industrial catalysts, potential catalyst poisoning, energy losses due to cooling before Methanol production...
- >> Optional Fischer-Tropsch synthesis to Synfuels production same challenges than with RWGS
- Fischer-Tropsch synthesis results in even 30% lower yields of synfuel fractions than methanol production route

Setimated fuel costs for consumers 3-4 times more than fossilbased products

OPTION FOR USING WASTE TO PRODUCE X ?

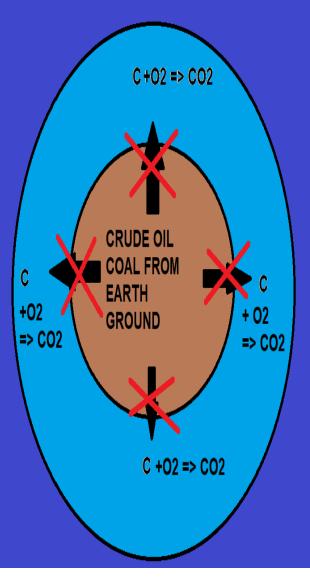
IS THERE ENOUGH WASTE ?

EU

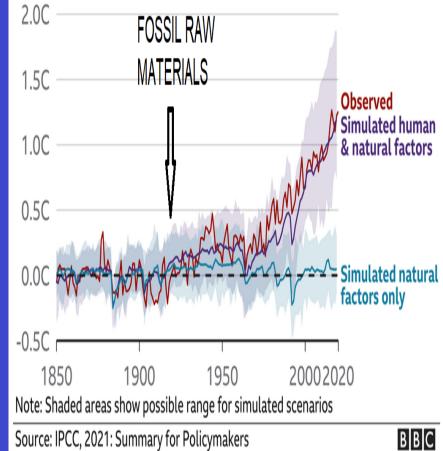
>> In EU 511 kg/person municipal waste, 229 Mt/a

FINLAND

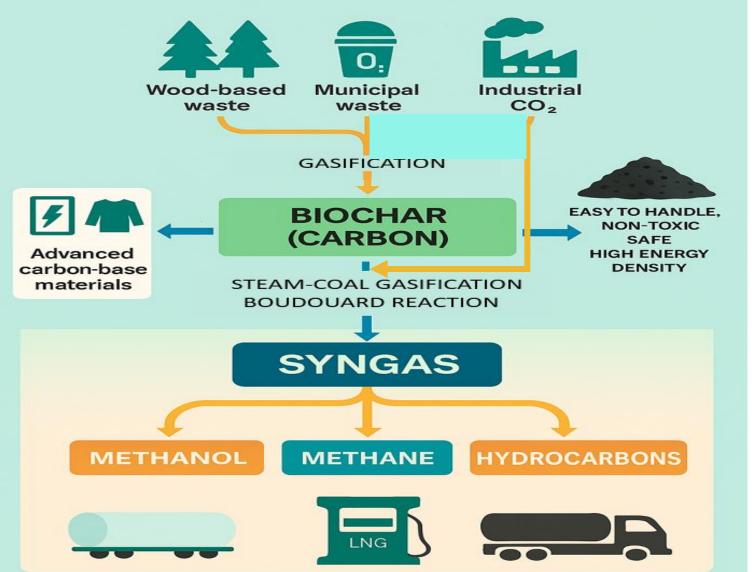
>> In Finland 468 kg/person municipal waste, 2.6 Mt/a


E.g. in Finland wood based waste is combusted 16 Mt/a, 20 Mm³ wood/a => 12 Mt Methanol/a

(Methanol consumption in EU 11.3 Mt Methanol/a)

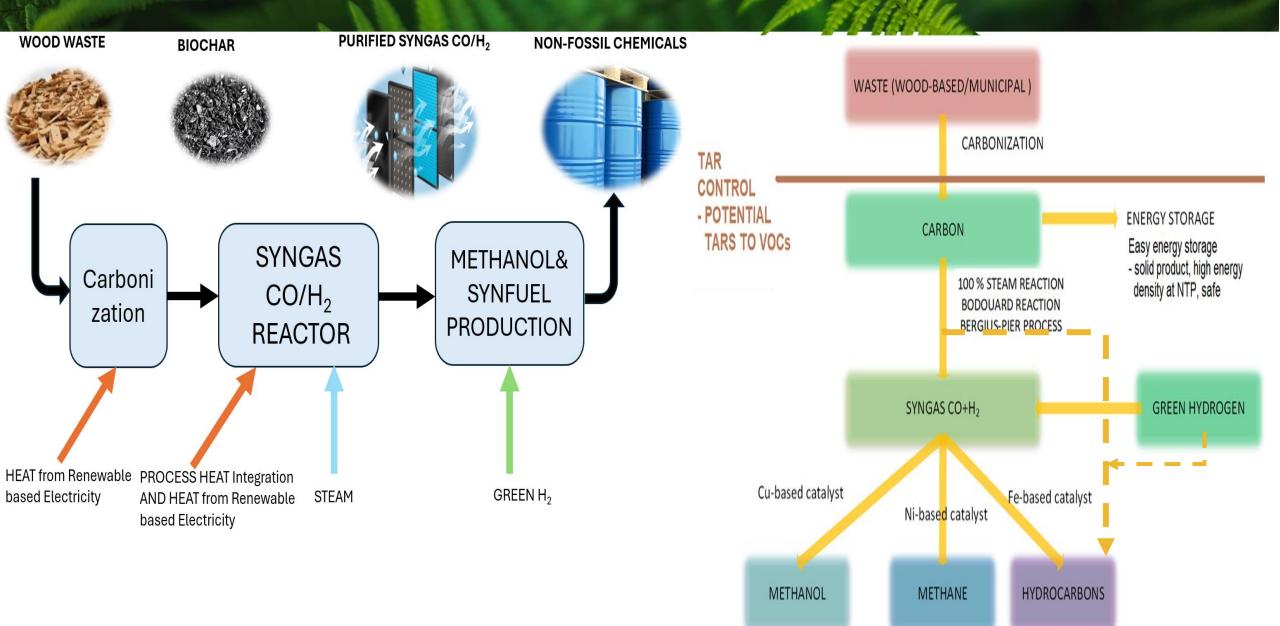

WHY TO USE WASTE TO PRODUCE X ?

- Replacement of fossil based products => substantial CO₂ emission reduction
- CO₂ hydrogenation is expensive and inefficient due to losing hydrogen in water production. Waste-to-X is option.
- Waste treatment currently utilises low efficiency electricity production by combustion or even land fill storage
- Current techniques in waste treatment increase CO₂ emissions
- Screen electricity can subtitute heat and power obtained form waste combustion based energy production.

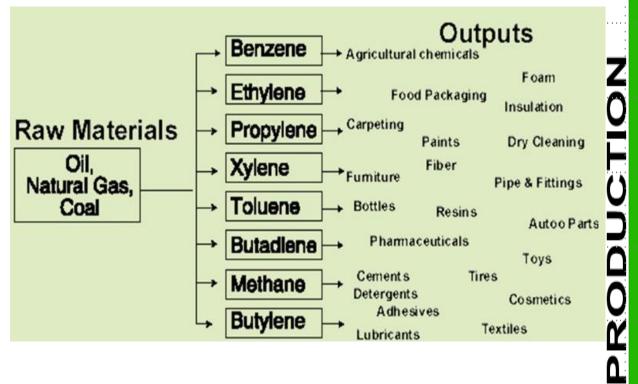


Human influence has warmed the climate Change in average global temperature relative to 1850-1900, showing observed temperatures and computer simulations

HOW IS IT DONE ?

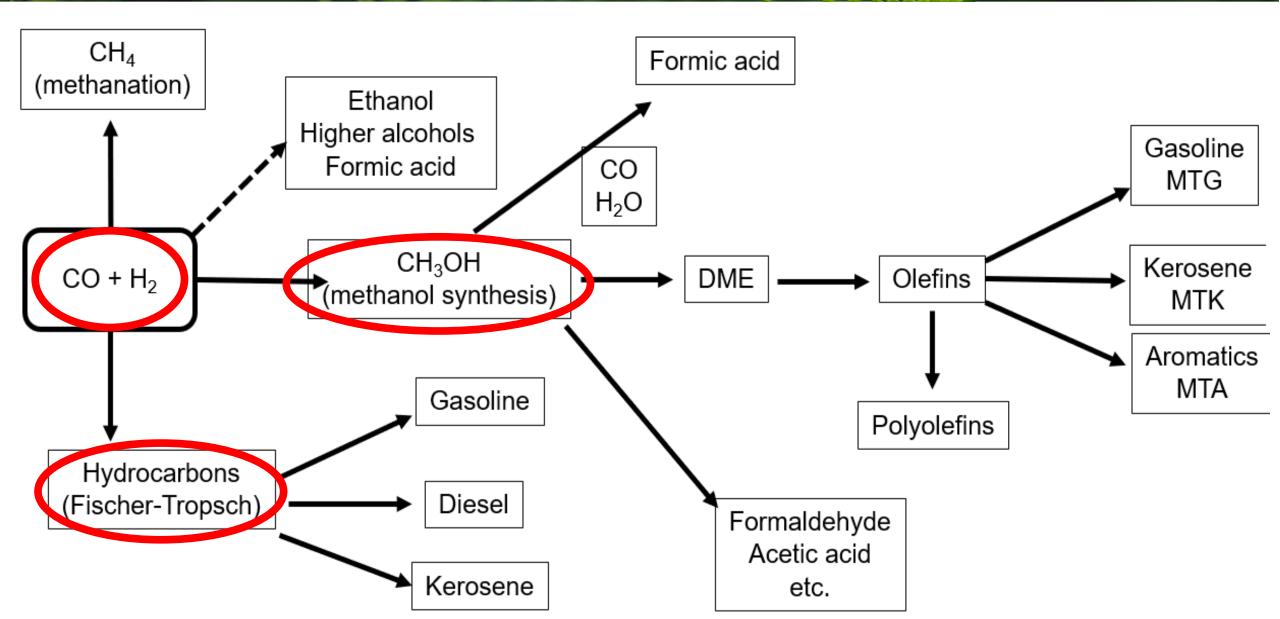

>> RAW MATERIALS

>> BIOCHAR PRODUCTION

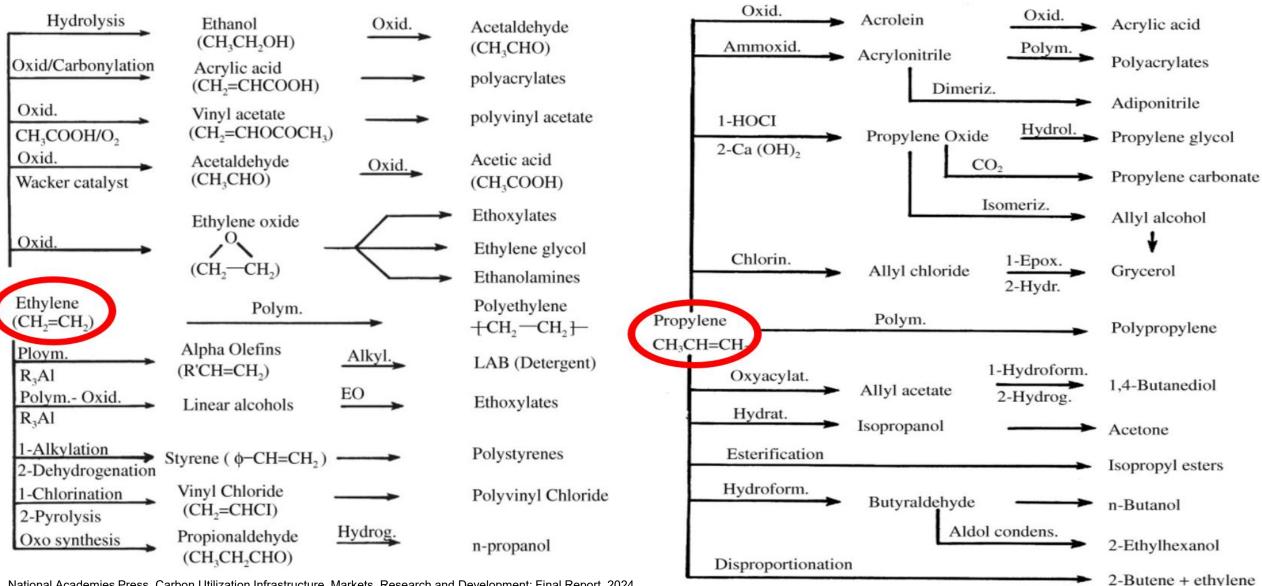

- >> Biochar as energy storage
- >> Biochar as simple transport
- LOW TAR SYNGAS PRODUCTION FROM BIOCHAR + STEAM =>hydrogen and carbon monoxide OR biochar + CO2 => carbon monoxide
- ELECTRICAL HEATING improves syngas yield significantly compared to standard gasification employing oxygen+steam
- >> SYNGAS TO PRODUCTS

HOW IS IT DONE ?

WHAT FOSSIL BASED CHEMICALS ARE SUBSTITUTED 21



· · · ·		1			
	About 10 Raw materials: crude oil, natural gas,				· · · · · · · · · · · · · · · · · · ·
	coal, biomass, minerals (salts, phosphates, sulfur), ores, air and water.		· · · · · · · · · · · · · · · · · · ·		
p s	bout 20 Raw products: ethylen ropylene, butadiene, benzene, ynthesis gas (hydrogen-car nonoxide mixture), ammonia,	bon			
	cid, sodium hydroxide, chlorin	~~~			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
urea, formaldehyde	mediates: methanol, ethanol, v , ethylene oxide, epichlorohydi	rin, acetic acid,	yrene,		, , , , ,
	c acid, cellulose, 1,2-dichloroe		haa aaluar	to fortiliza	
* Suuuu Ghemicais, consun	ner products, plastics, pharmaceut fibers, cosmetics, etc		iyes, soiver	its, iertinize	


Weissermel,K., Arpe, H-J, Industrial Organic Chemistry, Wiley-VCH, Weinheim, 1997 Ullmann's Chemical Engineering&Plant design: Plant and Process design Vol.2, Wiley-VCH, Weinheim 2005

NUMBER OF PRODUCTS

WHAT FOSSIL BASED CHEMICALS CAN BE SUBSTITUTED?

WHAT FOSSIL BASED CHEMICALS CAN BE SUBSTITUTED?

National Academies Press, Carbon Utilization Infrastructure, Markets, Research and Development; Final Report, 2024, Washington DC, USA

SUMMARY AND CONCLUSION

- >> Very expensive to cut down co2 emissions by co2 hydrogenation
 - >> Especially when renewable electricity for green production is mainly available at day time and periodically during the year
 - >> Recycling of carbon through biochar and employing electrical heating more efficient => lower cost and higher efficiency
- >> Severe technical challenges in rwgs process converting co2 to syngas
- >> Waste-to-x instead of combustion has potential to non-fossil fuels&chemicals production
- >> Co2 emissions reduction due to substituting combustion & fossil raw materials use
- Estimated methanol production costs 500-650 eur/t significantly lower than > 1200-1300 eur/t for co2 hydrogenation with green h2
- >> Future platform chemicals: syngas, methanol, ethene, propene, and ft-products

LUT University