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Study about the hydrogen embrittlement behavior of different highly alloyed 
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Prospects of H2Pipeline projects in Austria

What is done so far? What is understood?

A trailblazer in the field of design and strength analysis of metallic parts 

and components in Finland since 1974; towards testing and designing 
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Future new member: 

Dr. Digvijay Singh (Starting from Jan. 2025)
From National Insitute of Materials Science (NIMS), Japan

Visiting Professor: 

Prof. Martin Leitner
From Technical University of Graz, Austria



Overview of  activities of LUT Steel Structures

• Design and testing hydrogen storage tanks, pipelines, etc.

• Hydrogen embrittlement and its mechanisms

• Steel structures for hydrogen energy

• Fatigue assessment methods and life prediction

• Static and fatigue strength of welded joints and components

• High Strength steels (HSS) and Ultra High Strength Steel 

(UHSS)

• High-cycle and low-cycle fatigue behaviour of components in 

view of their microstructure 

• Microstructure-mechanical properties relationships

• Structural performance and quality of high-strength steels

• Enhancement of fatigue strength of welded joints by welding 

techniques and post-weld treatments

• Numerical methods and analysis of welded structures, incl. 

stress analysis and welding simulations

• Stability and distortion phenomena of thin-walled products

• Performance of steel structure at subzero temperatures

• Structural performance of AM components

• Failure analysis of structural components

• Environmental effect on mechanical response of components
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Paper publication status

Number of publications in 2024

Paper contributions:
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Fatigue of high-strength steels

2020/03/04

LUT Steel Structures in Scopus (2021-2024)

Hydrogen embrittlement

UGhent

Tohoku 
University

LUT
University

LUT Steel Structures in top 10 of the world:



Projects

Key active projects:

• Business Finland: FOSSA II – Fossil-free Steel Applications II
• Business Finland: CaNeLis - Carbon-neutral lightweight ship structures using advanced 

design, production, and life-cycle services
• Business Finland: AluWeld, Fatigue studies of welded aluminium structures
• Business Finland: Dreams, Database for Radically Enhancing Additive Manufacturing and 

Standardization
• Business Finland: Viima, Real-time fatigue studies of the machines
• FWF, Austrian Science Fund – ESPRIT Development of hydrogen-resistant high-strength

steels
• HyGCEL project: Hydrogen and Carbon Value Chain in Finland

+ more than 50 small-scale projects with national and international companies



Hydrogen embrittlement 

Design of welded pipeline steels Compressors and gas turbines



Hydrogen pipeline projects lead by me in Austria

HyGCEL, 
Hydrogen
and Carbon
Value Chain 
(HyGCEL) 
project,
LUT

In Austria,
Hydrogen pipeline
design, FFG

EU Horizon, 
HyStories

German pipeline

associations



Stress intensity factor



Stress intensity factor



Plain strain fracture



Plain strain fracture



Plain strain fracture



Mixed mode fracture



Elastic-Plastic Fracture Mechanics

J Integral



Elastic-Plastic Fracture Mechanics

CTOD - Crack Tip Opening Displacement



Hydrogen pipeline test in Austria: measurement of toughness

ASME B31.12 features a nonlinear correlation (in log-

scale) between crack growth rate and SIF range. ASME B31.12

suggests a characteristic design da/dN curve for hydrogen

pressure under 20 MPa (200 bar).

LEFM approach

J-Integral Approach



FEM and Machine Learning

Data Analytices Prediction

(a)
(b)

(c)

(d)

(e)
(f)

Constant Parameters

▪ Stress ratio of  0.1 

▪ Thickness of 10 mm
▪ Ambient temperature

▪ Testing frequency of 1 Hz

▪ Compact tension specimen
▪ Based on Standard ASTM E647

Variable Parameters

▪ Yeild stress, Tensile strength 

▪ Chemical composition 
▪ Pressure of hydrogen of 0.7 up to 90 MPa

Strain

S
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s

Data collection Prediction Data Analytics

Correlation
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s

Application of feature selection techniques 

▪ Study of effect of each parameter on FCG

▪ Finding of  key factors influencing FCG
▪ Effect of critical alloy elements on FCG

Correlation analysis 

Application of Machine Learning 

▪ Development of predictive models

▪ Assessment of various models 
▪ Verification of developed model

Actual value
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Methodology 

Data Analytics 
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LUT Steel Structures, Member of Standard Committee

❖ Prof. Masoud Moshtaghi is a member of the Standard Committee at NACE and API for hydrogen pipeline 

testing procedures.
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Hydrogen embrittlement in martensitic steels
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Hydrogen embrittlement in steels
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M. Eskinja, G. Winter, J. Klarner, H. Schnideritsch, G. Mori, M. Moshtaghi, Procedia Structural Integrity, 2024.

M. Eskinja, G. Winter, J. Klarner, H. Schnideritsch, V. Razumovsky,M. Moshtaghi, G. Mori, Engineering Failure Analysis, 2024

𝐼𝐻𝐸𝑆 =
𝛿𝑎𝑖𝑟 − 𝛿𝐻
𝛿𝑎𝑖𝑟

Martensitic steel

Martensitic steel

• Brittle fracture

• Ductile fracture
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20 μm

Shallow dimples

Quasi-cleavage

Air

H

1 mm 100 μm

Deep dimples

Serrated markings

Due to slip localisation
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Strain localization 

mapping

Density functional theory (DFT) results of the 

trapping sites at tetrahedral and octahedral 

sites in steel structures.

Masoud Moshtaghi’s Google Scholar: https://scholar.google.com/citations?user=UgjW2j8AAAAJ&hl=en

Martensitic steel design for steel pipelines in elastic loading 

regime in the high-pressure gaseous hydrogen condition
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Residual stress/strain measurements
Weld joints (SAW, FCAW and SMAW) of pipelines: towards hydrogen-resistant steel pipelines

Numerical simulation results

Shielded metal arc welding (SMAW)Flux-cored arc welding (FCAW)

SMAW

FCAW

* M. Moshtaghi*, B. Loder, M. Safyari, T. Willidal, T. Hojo, G. Mori, “Hydrogen trapping and desorption affected by ferrite grain boundary types in shielded metal and flux-cored arc weldments with Ni 

addition” International Journal of Hydrogen Energy, Vol. 47, 2022, 20676-20683.

Grain observations

TDSSubmerged arc welding (SAW)
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Hydrogen embrittlement in ferritic and F/P steels
 

Masoud Moshtaghi’s Google Scholar: https://scholar.google.com/citations?user=UgjW2j8AAAAJ&hl=en
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characterisations
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mapping & simulation
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Activities and current projects: Hydrogen embrittlement in pearlitic steels

Block Boundary

      LAGBs

5 µm

5 µm500 nm

10 μm

Masoud Moshtaghi’s Google Scholar: https://scholar.google.com/citations?user=UgjW2j8AAAAJ&hl=en

Multiscale microstructural 
characterisations

 Multiscale hydrogen 
mapping & simulation

 H-assisted fracture 

evaluation
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Activities and current projects: Hydrogen embrittlement in austenitic steels

Masoud Moshtaghi’s Google Scholar: https://scholar.google.com/citations?user=UgjW2j8AAAAJ&hl=en


Multiscale microstructural 

characterisations


Multiscale hydrogen 
mapping & simulation

H-assisted fracture studies



Design and testing hydrogen pipelines with SSAB Tubulars

Goal: Consideration of the effect of hydrogen exposure on fatigue design of Finnish pipelines

Fatigue of a weld joint / welded component

Construction of a hydrogen exposure test device as part of the loading rig

Testing the steels and welded steels under the fatigue conditions in the presence of hydrogen.

Analytical approach to the performance of the steels in fatigue conditions

Ranking the materials based on their applicability in hydrogen-assisted fatigue applications.

Studying the root cause failure of the specimens in the hydrogen-assisted fatigue condition.

Fossil Free Steel Application (FOSSA) – Hydrogen-assisted fatigue in pipelines
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Hydrogen Microprint Technique

Hydrogen Permeation Tests

Fatigue crack growth behaviour by

linear elastic fracture mechanics 

(LEFM)



0 1×105 2×105 3×105 4×105 5×105
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 Uncharged

 1.2 ppm

 2.05 ppm

 5.1 ppm

 8.21 ppm

E
n
tr

o
p

y
 g

en
er

at
io

n
 (

M
JK

-1
m

-3
)

Number of cycles

FFE

𝜂 = 0׬
𝑡𝑓𝑊𝑝

𝑇
𝑑𝑡 

Synchrotron computed tomography and micromechanical tests at LSU, USA

Hydrogen-enhanced entropy (HEENT): a newly 

proposed mechanism for hydrogen embrittlement

Total entropy calculation 

via inelastic dissipation (𝑊𝑝)

Fatigue crack growth behaviour by linear elastic fracture mechanics (LEFM)

Hydrogen-enhanced entropy (HEENT): A concept for hydrogen embrittlement prediction, International  Journal of Hydrogen Energy, Volume 53, 2024, Pages 434-440.



HEENT mechanism: Makes the mechanism-based HE-

resistance alloy design and monitoring  possible.

❖ The concept of hydrogen-enhanced entropy (HEENT) for hydrogen embrittlement prediction was introduced and 

discussed. The contribution of the different mechanisms to the total entropy, i.e. HEENT effect compensates for the 

total entropy reduction generated due to reduced fatigue life. This is applicable to the other types of hydrogen-

assisted fracture, based on HEDE, and HESIV, HELP, HELP+HEDE, etc. 

❖ This makes feasible the mechanism-based design of HE resistant alloys 

and structures. 

❖ With the monitoring the evolution of entropy and estimation of the 

generated entropy, one can reach to viable approach to estimate the 

efficiency of the different preventive actions for mitigating HE and also, 

indexing them.  
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the material irrespective of 

the hydrogen amount. This 

makes the prediction of the 

failure possible. 

Hydrogen-enhanced entropy (HEENT): A concept for hydrogen embrittlement prediction, International  Journal of Hydrogen Energy, Volume 53, 

2024, Pages 434-440.



Hydrogen pipeline fatigue testing and analysis
HyGCEL project

Hydrogen partial pressure as low as 1 bar on X52 
will degrade the material.

ASME B31.12 features a nonlinear correlation (in log-

scale) between crack growth rate and SIF range. ASME B31.12

suggests a characteristic design da/dN curve for hydrogen

pressure under 20 MPa (200 bar).



Design and testing hydrogen pipelines in Finland

Fatigue life as a function of pressure range for DN500 t ¼12.7 mm pipeline



• Hydrogen Mapping by Hydrogen Microprint 
Technique/ Silver Decoration

• Thermal Desorption Spectroscopy (TDS)
• Hydrogen Hot/Melt Extraction
• Hydrogen Electrochemical Permeation Tests
• Hydrogen Diffusion & Profile in Metals by finite 

element analysis
• Hydrogen Mapping by SKPFM
• Hydrogen Mapping by LIBS
• Hydrogen Mapping by NanoSIMS

Facilities developed so far in LUT

Analytical Hydrogen Characterisation

Mechanical Testing and Fatigue Life evaluation

• High Cycle and Low Cyclic Fatigue Test with various test capacities
• Mechanical testing in different sizes and shapes
• Mechanical testing of the specimens in different environments 
• Fracture mechanics testing approach, CT specimen
• High Cycle and Low Cyclic Testing
• Micro-Hardness Testing
• Slow Strain Rate Testing
• Finite Element and Machine Learning

Tools & Methods

Microstructural Observation

Quantum beam evaluation of the stressed specimen

• X-ray diffraction
• X-ray synchrotron diffraction
• Neutron diffraction

• SEM/EDS
• Optical Microscopy
• 3D Surface Measurement Device
• SEM/EBSD/FIB
• TEM
• HRTEM
• Atom Probe Tomography

Microstructural 
Observation

Mechanical testing

Hydrogen
 characterisation

Quantum 
beams



Facilities

Mechanical Testing and Fatigue Life evaluation

• High Cycle and Low Cyclic Fatigue Test with various test capacities
• Mechanical testing in different sizes and shapes
• Mechanical testing of the specimens in different environments 
• Fracture mechanics testing approach, CT specimen
• High Cycle and Low Cyclic Testing
• Micro-Hardness Testing
• Slow Strain Rate Testing
• Fatigue testing in cryogenic condition
• Finite Element and Machine Learning

Mechanical testing

Fatigue crack growth behaviour by

linear elastic fracture mechanics (LEFM)



Low-cycle fatigue assessment: experiment & simulation



• Hydrogen Mapping by Hydrogen Microprint 
Technique/ Silver Decoration

• Thermal Desorption Spectroscopy (TDS)
• Hydrogen Hot/Melt Extraction
• Hydrogen Electrochemical Permeation Tests
• Hydrogen Diffusion & Profile in Metals by finite 

element analysis
• Hydrogen Mapping by SKPFM
• Hydrogen Mapping by LIBS
• Hydrogen Mapping by NanoSIMS)

Facilities

Analytical Hydrogen Characterisation

Hydrogen Mapping by SKPFM at LUT

Hydrogen Electrochemical Permeation Tests

TDS at LUT

Hydrogen Microprint Technique

Fatigue crack growth rate at LUT

Hydrogen
 characterisation

Nano SIMS

Hydrogen Diffusion & Profile in Metals 
by Finite Element Analysis



Facilities

Microstructural Observation

• Optical Microscopy
• 3D Surface Measurement Device
• SEM/EDS/EBSD
• TEM
• Atom Probe Tomography

Microstructural 
Observation

Atom Probe Tomography

Scanning electron microscopy (SEM) at LUT

Transmission electron microscopy (SEM) at LUT



Facilities



Fatigue performace – SN-curves



Sub-zero fatigue testing

Ethanol
cooled



RHS X-joint (subzero)



Ultimate capacity



Ultimate capacity



Various postprocessing evaluation



Fractograpghy

• SEM for analysis

• Connecting local quality and fatigue performance
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Welding simulation



Fatigue prediction based on ENS method
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Symposiums organised by LUT Steel Structures 



Symposiums (co-)organised by LUT Steel Structures 



Commission XI: Pressure Vessels, Boilers and Pipelines

Commission XI Pressure Vessels, Boilers and Pipelines

Chair: Prof. Masoud Moshtaghi

Head of Steel Structures RG, 

LUT University, Finland

Selected topics: 

1- Welded hydrogen pipelines

2- Wire arc additive manufacturing

3- Laser welding

4- Hybrid welding

5- Laser powder bed fusion

6- Hydrogen storage

7- Hydrogen transport

8- Underground hydrogen storage



Contribution of LUT Steel Structures

Keynote speaker: 

Prof. Masoud Moshtaghi

Design of Hydrogen Embrittlement

Resistant High Strenght Steels for 

Different Applications



Thank you for 
your attention! 

https://scholar.google.com/citations?user=UgjW2j8AAAAJ&hl=en

https://www.scopus.com/authid/detail.uri?authorId=55387560300

LUT Steel Structures

https://scholar.google.com/citations?user=UgjW2j8AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55387560300
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