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The role of hydrogen in the value chain and a 5y Tompere niversty
transportation case example “Southeast-Ostrobothnia”

Topics of this presentation
The role of hydrogen in the energy system
Feasibility of hydrogen transportation
The transportation case Southeast-Ostrobothnia
Challenges and opportunities for chemicals in Europe
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Role of Hydrogen in the Value Chain
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» Hydrogen is important for
applications that cannot be
directly electrified: e-fuels, e-
chemicals, e-materials

» The value chain is complex
and comprises several steps,
such as electricity generation,
transport, and hydrogen and
final product production

» By far largest share of
hydrogen is as an
intermediate product for the
final product, such as
ammonia, methanol, kerosene
jet fuel

» Final products are easier to
transport as hydrogen
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Flexibility provided by hydrogen storage “HYGCEL
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» Hydrogen storage connects
variable renewable electricity
with less flexible demand
profiles such as
PtX production

»» Hydrogen storage buffers the
low-cost renewable electricity
for times of demand

»» The flexible hydrogen storage
for PtX production enables
massive additional benefits
for the energy system,
avoiding inefficient and
costly overdimensioning of
renewable generation
capacities.
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Power-to-X Economy as new characteristic Term
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https://onlinelibrary.wiley.com/doi/10.1002/pip.3659
https://onlinelibrary.wiley.com/doi/10.1002/pip.3659
https://doi.org/10.1016/j.ijhydene.2023.08.170
https://www.greens-efa.eu/en/article/document/accelerating-the-european-renewable-energy-transition
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Analysing transport costs

Cost of transporting H, by ship and pipeline
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* Source: Galimova et al. (2023a; 2023b)
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»» Transportation of final PtX products is
more attractive than transportation of H,

2000 km hydrogen transport by pipeline:
a.bOUt 15'20 €/MWhH2LHv

2000 km ammonia transport by ship:
about 1.5-2 €/ MWh,.a.m

»» Short distance hydrogen transportation is
feasible, whereas long-distance
transportation might not be attractive

Short distance (several 100s km) transport is no
cost burden

Long distance (> several 100s km) transport
chains for hydrogen are unlikely due to high
cost ... it also means that Europe may not
import hydrogen by ship from overseas

* Impact ofinternational transportation chains on cost of green e-hydrogen: Global cost of hydrogen and consequences for Germany and Finland
* Feasibility of green ammonia trading via pipelines and shipping: Cases of Europe, North Africa, and South America


https://www.sciencedirect.com/science/article/pii/S030626192300733X
https://doi.org/10.1016/j.jclepro.2023.139212

LuT

University

Transport case — Southeast - Ostrobothnia

« Several industrial cases involve electricity and/or hydrogen transmission from wind
sites to bio-CO, sites, or CO, transport from CO, sites to a wind site.

+  We studied methanol production for the case of Finland combining best wind resources in
North Ostrobothnia and bio-CO, in the southeast.

* CO, transport seems to be the least cost transport option.

« Transporting H, or electricity cost almost the same, Three scenarios for SE+J in 2050
but power lines have multiple valuable %
roles in an electrified energy system. 70 -
. ] . . 60 » MeOH production
* Despite slightly higher cost sending the energy to 15 = H2 transport
Southeast Finland may be still H2 production

m Elec. transmission
CO2 transport

u CO2 capture

m Electricity

attractive for regional industry policy reasons.

[€/MWh,MeOH,LHV]
8 &8 8

]
[ — ]




Bacground: Current Ethylene Production
Landscape in Europe

80000
— 70000 - ™
2 - | | -
Zoooo | R F e - o B m
k] — ] [ m -
& u
£ 50000
I~
8
g so000
2 2%
& 30000
g
o
S 20000
3
10000
0Illllllllllllllllllllll = Germany = BNL France
1990 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2016 2016 2017 2018 2019 2020 2021 = Spain = Italy ® Finland

m CC4+others  m Gas oil Naphtha Propane/Butane/LPG = Ethane

»» Chemical production in the EU was responsible for 925 MtCO,, in 2020 globally, and is the third largest emitting sector in the EU
= Emissions have been reduced by 55% relative to 1990
= Due to embedded carbon, only ~20% of emissions come from process emissions, as majority are related to fossil fuel combustion
= EUtargets to be climate neutral include both direct and indirect emissions

»» Ethylene is most produced chemical with total production capacity of 23.5 MtC,H,, with naphtha as the dominating feedstock
»» Germany and Belgium and the Netherlands have 37% of all EU steam cracker capacities

* Source: Lopez et al. (2024)
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UK
= Rest of Europe

* Assessing European supply chain configurations for sustainable e-polyethylene
production from sustainable CO2 and renewable electricity Impact of international


https://doi.org/10.1016/j.enconman.2024.118295
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Background: Green Ethylene Alternatives
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»» Primary routes to defossilise ethylene production include:
= Biomass-based polyethylene
= Electricity-based polyethylene

»» Many processes, including methanol-to-olefins (MTO), Fischer-Tropsch synthesis-to-olefins, and oxidative coupling of methane can use
both biomass- and electricity-based feedstocks



Methods: System Definition for Case Study

»» Four configurations studied:

= e-Hydrogen imports from Morocco or Chile
= e-Methanol imports from Morocco or Chile
= e-PE imports from Morocco or Chile
= Fulllocal e-PE production in Europe

»» Hydrogen storage and electricity balancing components including
battery and hydrogen gas turbines used to operate the H-DR and EAF
at 8000 h/a

= Salt cavern hydrogen storage used in Germany, Belgium and the Netherands,
Spain, and Morocco

= Rock cavern hydrogen storage used in Finland and Chile

»» Direct air capture of CO, used in Germany, Belgium and the
Netherlands, Spain, Morocco, and Chile

»» CO, point source capture from a pulp and paper plant used in Finland
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Results: Levelised Costs of e-PE for Finland
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~  LCOPE highest in Finland of the case countries considered . B, BT Oosse ELOEL
- However, hydrogen imports still consistently see higher LCOPE

—  Import of e-methanol and e-PE most appealing for Finland
- e-PE imports are 72-78% of local LCOPE in 2030 and decrease to 43-49% in 2050
- e-Methanol imports similarly attractive at 76-104% of local LCOPE in 2030 and 53-68% in 2050

—  Impact of pipeline transportation on carbon footprint most noticeable due to high pipeline requirements 11
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Discussion: Main Findings

»» With GHG pricing mechanisms, e-PE imports in Europe from Morocco and Chile as well as local e-PE production in
Spain are the lowest cost e-PE supplies starting in 2040

= Cost of fossil PE could be increased if total life-cycle emissions were considered

»» Results from Spain suggest that e-PE can be produced at competitive prices compared to imports
= Germany, Belgium and the Netherlands are area limited
= Finland, though slightly more expensive, could expand production and serve as export option within Europe

»» Finland, though slightly more expensive, could expand production and serve as export option within Europe
= Next 10-15 years are an important window of opportunity

»» Affordable hydrogen is the key factor in reducing costs for chemical production
= Locally produced green hydrogen is cost-competitive with imports from regions with the best solar and wind resources

»» e-Methanol feedstock business maybe in strong competition among the regions of low hydrogen production costs

12
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Thank you for your attention ...
... and to the team!
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all publications at: i il.uri? =
new publications also announced via Twitter: @ChristianOnRE 13


http://www.scopus.com/authid/detail.uri?authorId=39761029000
https://twitter.com/ChristianOnRE
mailto:christian.breyer@lut.fi
https://twitter.com/ChristianOnRE

	Default Section
	Slide 1: HYGCEL WP2 T2.2 Results from  transportation feasibility studies

	Session 2
	Slide 2: The role of hydrogen in the value chain and a transportation case example “Southeast-Ostrobothnia”
	Slide 3: Role of Hydrogen in the Value Chain
	Slide 4: Flexibility provided by hydrogen storage
	Slide 5: Power-to-X Economy as new characteristic Term
	Slide 6: Analysing transport costs
	Slide 7: Transport case – Southeast - Ostrobothnia
	Slide 8: Background: Current Ethylene Production Landscape in Europe
	Slide 9: Background: Green Ethylene Alternatives
	Slide 10: Methods: System Definition for Case Study
	Slide 11: Results: Levelised Costs of e-PE for Finland
	Slide 12: Discussion: Main Findings
	Slide 13


